
LLM-based Vulnerable Code Augmentation:
Generate or Refactor?

Dyna Soumhane Ouchebara1 and Stéphane Dupont1 ∗

1- University of Mons - Computer science department
Mons - Belgium

Abstract. Vulnerability code-bases often suffer from severe imbalance,
limiting the effectiveness of Deep Learning-based vulnerability classifiers.
Data Augmentation could help solve this by mitigating the scarcity of
under-represented CWEs. In this context, we investigate LLM-based aug-
mentation for vulnerable functions, comparing controlled generation of
new vulnerable samples with semantics-preserving refactoring of existing
ones. Using Qwen2.5-Coder to produce augmented data and CodeBERT
as a vulnerability classifier on the SVEN dataset, we find that our ap-
proaches are indeed effective in enriching vulnerable code-bases through
a simple process and with reasonable quality, and that a hybrid strategy
best boosts vulnerability classifiers’ performance.

1 Introduction

Deep learning models for software engineering tasks depend on large, diverse,
and well-labeled datasets, yet collecting and annotating such data is often ex-
pensive and time-consuming. Data Augmentation (DA) mitigates data scarcity
by synthetically expanding the training set, improving generalization and ro-
bustness without additional labeling effort. However, unlike in computer vision
and NLP, DA for source code is challenging: code is a structured, executable
artifact whose meaning relies on strict syntactic and semantic constraints, so
small edits can easily break compilation or alter behavior. Effective Code Aug-
mentation (CA) must therefore preserve syntax and semantics while allowing for
enough diversity. This challenge is amplified in software vulnerability detection,
where datasets are highly imbalanced both between vulnerable and safe classes
and across vulnerability types (some being strongly under-represented). In this
setting, DA can enrich minority classes with diverse yet semantically consis-
tent variants, consequently reducing the impact of imbalance on vulnerability
detection models. Recently, large language models (LLMs) have been widely
adopted for code-related tasks such as generation, refactoring, documentation,
and repair, offering a powerful new mechanism for code augmentation. Our work
explores this line of research, and aims to answer the following questions:

RQ1: How effective is LLM-based Code Augmentation in enriching vulner-
able code in highly imbalanced vulnerability code-bases?

RQ2: Can LLM-based Code Augmentation boost the performance of Deep
Learning models in the vulnerability classification task?

∗This study was funded by CyberExcellence project of CyberWal program by Digital Wal-
lonia.



2 Related Work

Zhuo et al. [1] categorize Code Augmentation methods into rule-based transfor-
mations (refactorings, renamings), model-based generation (GANs, pre-trained
Transformers), and example interpolation methods (Mixup). Dong et al. [2]
directly apply NLP augmentation techniques to code and report improved per-
formance of models, despite the risk of broken syntax. MIXCODE [3] generates
semantics-preserving refactorings and then linearly mixes (Mixup) their embed-
dings to regularize code classifiers. BUGLAB [4] uses a learned model that
applies bug-inducing edits to benign code, producing synthetic buggy examples.
In the vulnerability detection setting, MPDA [5] augments imbalanced vulnera-
bility datasets by combining classical oversampling methods, a GAN that syn-
thesizes new vulnerable samples, and fuzzy sampling to augment minority-class
instances. Qi et al. [6] transform existing vulnerable and safe functions via
handcrafted semantic-preserving edits to produce new variants that retain the
original vulnerability labels. FGVulDet [7] employs an approach that only per-
turbs code regions deemed unrelated to the vulnerable zone, so that new samples
share the same vulnerability while differing in surrounding context. VULGEN
and VGX [8, 9] mine vulnerability-introducing edit patterns from real patches
and reapplies these patterns at predicted suitable locations in benign code to
generate realistic vulnerabilities. More recently, Deng et al. [10] explored LLMs
for vulnerable data generation. They prompt GPT4 to synthesize vulnerable
versions of safe functions for under-represented CWE types, and to further self-
filter the outputs based on quality checks. Our approach follows this LLM-based
line but explores controlled generation and refactoring based on existing vulner-
able functions from a reliable dataset to produce structurally and contextually
diverse variants that preserve vulnerability semantics.

3 Methodology

3.1 Generation-based data augmentation

In the first generation strategy, we synthesize entirely new vulnerable functions
using an instruction-tuned LLM. For each vulnerability type (CWE), we ran-
domly select m real-world functions from the training set and use them as ex-
emples in a few-shot prompt. The model is asked to generate n new vulnerable
functions per prompt, and this process is repeated k times with different exem-
plar subsets, yielding n× k synthetic functions per vulnerability type.

Our prompting scheme relies on a fixed system message, which establishes
the model’s role and all global constraints, and a variable user message which
provides instance-level information. The system message assigns the model
the role of an expert in C/C++ and Python programming and software vulnera-
bilities and enforces strict output constraints. The model must return C/C++
or Python code only, with no comments, explanations, markdown, or language
tags, that must resemble real-world industrial C/C++ and Python and avoid



toy identifiers. Function, variable, and type names are required to follow realistic
project-style conventions. The user message begins with a description of the
CWE. The model is instructed to generate n independent function definitions,
separated by markers such as “func 1”, “func 2”, etc. Structural constraints are
imposed: each function must contain 20–150 non-empty lines, use project-like
types, and include a vulnerability that is embedded in realistic logic rather than
being the function’s sole purpose. Finally, the prompt provides m examples
(from training set), and the model is instructed not to copy those but only to
use them as guidance regarding naming conventions, code organization, and how
the vulnerability typically appears in practice.

Once the functions are generated, we proceed to quality checks. In the first
place, we verify the syntactical quality of the generated samples by passing
them through a C/C++ or Python parser. In a second place, we verify their
label quality. Ideally, this would be conducted by security experts, but as a
start for this research, we verified them using GPT-5.1 Thinking, which is one
of the strongest LLMs available (at submission-time). For this, we give a ran-
domly picked subset of q generated functions to the LLM, and ask it to verify if
it indeed contains a vulnerability of the given type or not.

3.2 Refactoring-based data augmentation

The second strategy produces augmented samples by refactoring functions al-
ready present in the dataset. For each vulnerability type and for every cor-
responding function, we prompt the LLM to generate n refactored variants.
We rely on 18 refactoring techniques commonly used in prior work. These
transformations alter code structure and surface form without changing seman-
tics or the underlying vulnerability. This is a categorized list of techniques:
Renaming (API, Arguments, Local variable and Method renaming), Adding un-
used elements (Arguments or Local variable adding), Dead code insertion (Dead
for/if/if-else/switch/while adding or Duplication), Logic-preserving rewrites of
control and expressions (For loop/If enhancement, Return optimal, Plus zero),
Safety / robustness guards (Filed enhancement), Logging (Prints).

In terms of prompting scheme, the system message instructs the model
to act as “an expert in C/C++ and Python programming, code refactoring, and
software vulnerabilities” and to generate n refactored versions of the given func-
tion. It must preserve the function’s semantics, parameter list, return type,
and vulnerability. To avoid inadvertent vulnerability repair, the prompt forbids
removing dangerous operations. The system message restricts the refactoring
space to the 18 techniques listed above; each generated function must apply at
least two distinct transformations. Output must consist solely of C/C++ or
Python code with realistic identifiers and without comments or explanations.
As for the user message, it defines the requested number of refactorings, the
required output format, the vulnerability description, and the function to be
refactored. No examples are provided, making this a zero-shot prompting setup.



Regarding quality verifications, we first check the syntactical quality just like
for the previous approach. Then, we verify their refactoring quality by asking
GPT-5.1 Thinking to check whether the quality of a randomly picked subset
of q refactored versions complies with the constraints and expected complexity.
We note that the label quality of generated samples is not verified, since it is
inherently preserved by design in this approach.

4 Experimental Setup

To evaluate the performance of our proposed approaches, we chose to apply
them on the SVEN Dataset [11]. This dataset was created in 2023 by manu-
ally inspecting security-related commits from three prior benchmarks (BigVul,
CrossVul and VUDENC) and only keeping those with no quality issues, and the
most critical CWE types. The statistics of SVEN’s training set are in Table 1
(after splitting their training data into 80% train and 20% validation).

cwe-
89

cwe-
125

cwe-
78

cwe-
476

cwe-
416

cwe-
22

cwe-
787

cwe-
79

cwe-
190

141 107 69 60 45 42 41 39 32

Table 1: Number of functions per CWE in SVEN Training set.

Concerning the Models, we choose Qwen2.5-Coder-32B1 for augmented
data generation, for its high rank in code LLM benchmarks23 (at the time we
conducted our experiments) especially on C/C++ and Python, and its suitable
size; and CodeBERT as the vulnerability classifier for its well-established code
representation capabilities as well as its lightness (allowing for quick fine-tuning).

In terms of Evaluation Metrics, our augmentation approaches are assessed
through the number of new vulnerable samples we can generate, the percentage
of augmentation obtained for each class, the average time per generated sample,
and the quality of augmented data (syntax, refactors, labels). As for the vulner-
ability classifier, we evaluate it by reporting the macro average f1 for an overall
performance indication on all classes.

Our Technical Setup comprises 3 A100-SXM4 GPUs and a 16GB RAM.

5 Evaluation

To answer RQ1, we review Table 2 which reports the assessment of our two
augmentation approaches. For the Generation approach, we generated 10 new
functions at a time, and stopped at a target of 500 functions in total per class.

1https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
2https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
3https://huggingface.co/spaces/bigcode/bigcodebench-leaderboard



Approach N◦ of
samples

% of
augmen-
tation

Average
time per
sample

Syntax
quality

Label
quality

Refactor
quality

Generation 3348 581% 13.38s 98.5% 0% /
Refactoring 1224 213% 59.08s 79.7% / 100%

Table 2: Assessment metrics for our two augmentation approaches.

We could increase the dataset size by 581%, with an average speed of 13.38s
per generated sample, which looks reasonable under our resources. In terms
of quality, 98.5% samples proved syntactically correct. On the other hand, the
label quality check, measured on a random subset of 10 generated functions per
class, surprisingly gave a 0% score. We, however, also checked the label quality
of the original dataset and found 0% for most CWEs. This means that: either
the training data is too complex for GPT5.1 Thinking to find the vulnerabilities,
or the dataset’s label quality is questionable (which was not expected, since it
has been manually curated by the authors). Further investigation will help us
confirm our hypotheses. For the Refactoring approach, we generated 10 new
functions at a time, and stopped at a target of 200 functions in total per class.
We could increase the dataset size by 213% with a speed of 59.08s per generated
sample (much slower than the first approach). The syntax quality of 79.7%
correct functions is acceptable, and the refactoring quality (measured just like
label quality above) is perfect.

Training data Original data Generation
augmented

Refactoring
augmented

Both aug-
mentations

Macro F1 0.62 0.64 0.60 0.67

Table 3: Macro-average F1 score for different training data.

To answer RQ2, we review Table 3 which reports the performance of our
vulnerability classifier before and after augmentation. The generation-based
augmentation indeed improves the the classifier performance, with an overall
Macro F1 score of 0.64 vs 0.62 on the original data. This increase is even more
noticeable if we look at the minority classes, such as cwe-22 increased by 18%
and cwe-190 by 8%. The refactoring-based augmentation, on the other hand did
not bring any overall improvement (though a few minority CWEs did improve,
cwe-022 by 18% and cwe-416 by 4%). Applying both augmentations proved to
be the most helpful performance-wise, with an overall improvement of 5% on
Macro F1, and a clear boost for all CWEs (up to 18% boost).

6 Conclusion

In this work, we proposed two LLM-based vulnerable code approaches: the first
synthesizes entirely new vulnerable functions based on examples, and the second
produces semantics and vulnerability preserving refactored versions of existing
functions. Our experiments allowed us to answer our research questions. For



RQ1, we conclude that our LLM-based augmentation approaches are indeed
effective in enriching vulnerable code-bases through a simple process and in
a reasonable time, with great syntax and refactoring quality, though the label
quality proved questionable. For RQ2, we observe that LM-based augmentation
can indeed boost the performance of vulnerability classifiers, and deduce that
the best strategy is a hybrid approach that applies both few-shot generation and
refactoring.

References

[1] Terry Yue Zhuo, Zhou Yang, Zhensu Sun, Yufei Wang, Li Li, Xiaoning Du, Zhenchang
Xing, and David Lo. Source code data augmentation for deep learning: A survey. arXiv
preprint arXiv:2305.19915, 2023.

[2] Zeming Dong, Qiang Hu, Yuejun Guo, Zhenya Zhang, Maxime Cordy, Mike Papadakis,
Yves Le Traon, and Jianjun Zhao. Boosting source code learning with text-oriented data
augmentation: an empirical study. Empirical Software Engineering, 30(3):68, 2025.

[3] Zeming Dong, Qiang Hu, Yuejun Guo, Maxime Cordy, Mike Papadakis, Zhenya Zhang,
Yves Le Traon, and Jianjun Zhao. Mixcode: enhancing code classification by mixup-
based data augmentation. In 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 379–390. IEEE, 2023.

[4] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug
detection and repair. Advances in Neural Information Processing Systems, 34:27865–
27876, 2021.

[5] Feiqiao Mao, Yingxiang Yuan, Xingyang Du, Li Gao, and Zhihua Du. Mpda: a data
augmentation approach to improve deep learning for software vulnerability detection.
Empirical Software Engineering, 30(5):140, 2025.

[6] Weiliang Qi, Jiahao Cao, Darsh Poddar, Sophia Li, and Xinda Wang. Enhancing pre-
trained language models for vulnerability detection via semantic-preserving data augmen-
tation. In International Conference on Security and Privacy in Communication Systems,
pages 184–203. Springer, 2024.

[7] Shangqing Liu, Wei Ma, Jian Wang, Xiaofei Xie, Ruitao Feng, and Yang Liu. Enhanc-
ing code vulnerability detection via vulnerability-preserving data augmentation. In Pro-
ceedings of the 25th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems, pages 166–177, 2024.

[8] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. Vulgen: Realistic
vulnerability generation via pattern mining and deep learning. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pages 2527–2539. IEEE, 2023.

[9] Yu Nong, Richard Fang, Guangbei Yi, Kunsong Zhao, Xiapu Luo, Feng Chen, and
Haipeng Cai. Vgx: Large-scale sample generation for boosting learning-based software
vulnerability analyses. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, pages 1–13, 2024.

[10] Xiao Deng, Fuyao Duan, Rui Xie, Wei Ye, and Shikun Zhang. Improving long-tail vul-
nerability detection through data augmentation based on large language models. In 2024
IEEE International Conference on Software Maintenance and Evolution (ICSME), pages
262–274. IEEE, 2024.

[11] Jingxuan He and Martin Vechev. Large language models for code: Security hardening and
adversarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pages 1865–1879, 2023.


